4737 Decision Mathematics 2

1	(i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any three stars paired to the correct rooms All correct $\begin{array}{ll} A \rightarrow 4,6 & D \rightarrow 3,4,5 \\ B \rightarrow 2,3,5 & E \rightarrow 5,6 \\ C \rightarrow 1,2 & F \rightarrow 4 \end{array}$	2]
	(ii)		B1 B1	Accept F Incomplete matching shown correctly on a second diagram (need not see other arcs) Arc $F \rightarrow 1$ must NOT be shown as part of the matching	2]
	(iii)	$\begin{array}{ll} \hline F=4-A=6-E=5-D=3-B=2-C=1 \\ & \\ \text { Arnie }=\text { Room } 6 & \text { Diana }=\text { Room 3 } \\ \text { Brigitte }=\text { Room 2 } & \text { Edward }=\text { Room 5 } \\ \text { Charles }=\text { Room 1 } & \text { Faye }=\text { Room 4 } \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	This path indicated clearly This matching listed in any form (but NOT just shown as a bipartite graph)	[2]

ANSWERED ON INSERT

3	(i)	Stage 1 2 3	$\begin{array}{r}\text { State } \\ \hline 0 \\ 1 \\ 2 \\ 0 \\ \hline 1 \\ \hline 2 \\ \hline\end{array}$	Action 0 0 0 0 1 1 2 0 2 0 1 2		Minimax 1 3 2 3 3 2 2	B1 M1 M1 A1 M1 A1	Minimax column for stage 1 shows $1,3,2$ identified in some way 1, 3, 2 transferred to working column for stage 2 correctly Calculating maximum values in working column for stage 2 Minimax column for stage 2 shows 3, 3, 2 identified in some way (cao) Calculating maximum values in working column for stage 3, correct method Minimax column for stage 3 shows 2 identified in some way (cao)	[4] [2]
	(ii)	Minim Minim	value route	3;0) - or in r	$\text { 2) }-(1 ; 0)$ rse)	$-(0 ; 0)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	2, сао Tracing their route (whatever problem solved) This route from correct working (using network $\Rightarrow \mathrm{M} 0$)	[3]
	(iii)	$(3 ; 0)$	3		(1;0)	$(0 ; 0)$	B1 M1 A1	All vertices labelled correctly Arcs correct, need not be directed Condone stage boundaries shown Arc weights correct (be generous in interpretation of which weight is attached to which arc)	[3]
Total = 12									

ANSWERED ON INSERT

4	(i)	A single source that joins to S_{1} and S_{2} Directed arcs with weights of at least 90 and 110, respectively T_{1} and T_{2} joined to a single sink Directed arcs with weights of at least 100 and 200, respectively	B1 B1	Condone no directions shown Condone no directions shown	[2]
	(ii)	If $A E$ and $B E$ were both full to capacity there would be 50 gallons per hour flowing into E, but the most that can flow out of E is 40 gallons per hour.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Considering what happens at E (50 into E) At most 40 out	[2]
	(iii)	$40+60+60+140=300$ gallons per hour	B1	300	[1]
	(iv)	$\begin{aligned} & 30+20+30+20+40+40+20+40 \\ & =240 \text { gallons per hour } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Evidence of using correct cut 240	[2]
	(v)	A feasible flow through network Flow $=200$ gallons per hour Cut through arcs $S_{1} A, S_{1} B, S_{1} C, S_{2} B, S_{2} C$ and $S_{2} D$ or cut $X=\left\{S_{1}, S_{2}\right\}, Y=\{A, B, C, D, E$, $\left.F, G, T_{1}, T_{2}\right\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Cut indicated in any way (May be on diagram for part (i))	[3]
	(vi)	Flows into C go to C_{IN}, arc of capacity 20 from $C_{\text {IN }}$ to $C_{\text {out }}$, and flows out of C go from $C_{\text {out }}$. Cut $X=\left\{S_{1}, S_{2}, C_{\text {IN }}\right\}$ or $X=\left\{S_{1}, S_{2}, C_{\text {IN }}, D\right\}$ shows max flow $=140$ gallons per hour	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	May have working or cut shown on diagram Into $C\left(S_{1}=40, S_{2}=40, D=20\right)$ Through C Out of $C(F=60, G=60)$ 140 (cut not necessary)	[4]
				Total	14

ANSWERED ON INSERT

